

TimeSide : open web audio processing framework

Contents:

	TimeSide : scalable audio processing framework and server written in Python
	Use cases

	Goals

	Funding and support

	News
	1.0

	0.9

	0.8

	0.7.1

	0.7

	Architecture

	Dive in

	Install

	User Interfaces
	Ipython

	Notebook

	Use you own data

	Web Server

	Batch

	Web player

	Documentation

	Tutorials
	Quick start

	Data management

	Using the 'stack' (previously decoded frames)

	Streaming out encoded audio

	Core API
	List of available processors

	Decoder package

	Analyzer package

	Encoder package

	Grapher package

	Provider package

	Development
	Developing within TimeSide

	Developing your own external plugins

	Production
	Deploying

	Scaling

	Sponsors and Partners

	Related projects

	Copyrights

	License

Indices and tables

	Index

	Module Index

	Search Page

TimeSide : scalable audio processing framework and server written in Python

TimeSide is a python framework enabling low and high level audio analysis, imaging, transcoding, streaming and labelling. Its high-level API is designed to enable complex processing on very large datasets of any audio or video assets with a plug-in architecture, a secure scalable backend and an extensible dynamic web frontend.

Use cases

	Scaled audio computing (filtering, machine learning, etc)

	Web audio visualization

	Audio process prototyping

	Realtime and on-demand transcoding and streaming over the web

	Automatic segmentation and labelling synchronized with audio events

Goals

	Do asynchronous and fast audio processing with Python,

	Decode audio frames from any audio or video media format into numpy arrays,

	Analyze audio content with some state-of-the-art audio feature extraction libraries like Aubio, Yaafe and VAMP as well as some pure python processors

	Visualize sounds with various fancy waveforms, spectrograms and other cool graphers,

	Transcode audio data in various media formats and stream them through web apps,

	Serialize feature analysis data through various portable formats,

	Provide audio sources from plateform like YouTube or Deezer

	Deliver analysis and transcode on provided or uploaded tracks over the web through a REST API

	Playback and interact on demand through a smart high-level HTML5 extensible player,

	Index, tag and annotate audio archives with semantic metadata (see Telemeta [http://telemeta.org] which embed TimeSide).

	Deploy and scale your own audio processing engine through any infrastructure

Funding and support

To fund the project and continue our fast development process, we need your explicit support. So if you use TimeSide in production or even in a development or experimental setup, please let us know by:

	staring or forking the project on GitHub [https://github.com/Parisson/TimeSide]

	tweeting something to @parisson_studio [https://twitter.com/parisson_studio] or @telemeta [https://twitter.com/telemeta]

	drop us an email on <support@parisson.com> or <pow@ircam.fr>

Thanks for your help!

News

1.0

	Server refactoring:

	audio process run on items (REST API track’s model)

	several tools, views, models and serializers

	REST API’s schema on OpenAPI 3 specification and automatic Redoc generation

	Move core and server from Python 2.7 to 3.7

	Upgrade Django to 2.2, Django REST Framework to 3.11, Celery to 4.4

	Add an Aubio [https://github.com/aubio/aubio] based decoder

	Add core and server processors’ versioning and server process’ run time

	Regroup all dependencies on pip requirements removing conda use

	Add Provider package as a core API component and as a REST API model

	Add provider plugins DeezerPreview, DeezerComplete and YouTube

	Improve server unit testing

	Add JWT authentication on REST API

	Various bug fixes

	Add core, server and workers logging

0.9

	Upgrade all python dependencies

	Add Vamp, Essentia, Yaafe, librosa, PyTorch, Tensorflow libs and wrappers

	Add a few analyzing plugins (Essentia Dissonance, Vamp Constant Q, Vamp Tempo, Vamp general wrapper, Yaafe general wrapper)

	Add processor parameter management

	Add processor inheritance

	Improve HTML5 player with clever data streaming

	Improve REST API and various serialzers

	Improve unit testing

	Various bug fixes

0.8

	Add Docker support for instant installation. This allows to run TimeSide now on any OS platform!

	Add Jupyter Notebook [http://jupyter.org/] support for easy prototyping, experimenting and sharing (see the examples in the doc).

	Add an experimental web server and REST API based on Django REST Framework, Redis and Celery. This now provides a real web audio processing server with high scaling capabilities thanks to Docker (clustering) and Celery (multiprocessing).

	Start the development of a new player interface thanks to Angular and WavesJS.

	Huge cleanup of JS files. Please now use bower to get all JS dependencies as listed in settings [https://github.com/Parisson/TimeSide/blob/dev/app/sandbox/settings.py#L199].

	Add metadata export to Elan annotation files.

	Fix and improve some data structures in analyzer result containers.

	Many various bugfixes.

0.7.1

	fix django version to 1.6.10 (sync with Telemeta 1.5)

0.7

	Code refactoring:

	Create a new module timeside.plugins and move processors therein: timeside.plugins.decoder,analyzer, timeside.plugins.encoder, timeside.plugins.fx

	WARNING: to properly manage the namespace packages structure, the TimeSide main module is now timeside.core and code should now be initialized with import timeside.core

	timeside.plugins is now a namespace package [https://pythonhosted.org/setuptools/setuptools.html#namespace-packages] enabling external plugins to be automatically plugged into TimeSide (see for example timeside-diadems [https://github.com/ANR-DIADEMS/timeside-diadems]). This now makes TimeSide a real plugin host, yeah!

	A dummy timeside plugin will soon be provided for easy development start.

	Move all analyzers developped by the partners of the Diadems project to a new repository: timeside-diadems [https://github.com/ANR-DIADEMS/timeside-diadems]

	Many fixes for a better processing by Travis-CI [https://travis-ci.org/Parisson/TimeSide]

	Add a dox file to test the docker building continously on various distributions [https://github.com/Parisson/Docker]

For older news, please visit: https://github.com/Parisson/TimeSide/blob/master/NEWS.rst

Architecture

The streaming architecture of TimeSide relies on 2 main parts: a processing engine including various plugin processors written in pure Python and a user interface providing some web based visualization and playback tools in pure HTML5.

[image: _images/TimeSide_pipe.svg]

Dive in

Let’s produce a really simple audio analysis of an audio file.
First, list all available plugins:

>>> import timeside.core
>>> timeside.core.list_processors()
IProcessor
==========
...

Define some processors:

>>> from timeside.core import get_processor
>>> from timeside.core.tools.test_samples import samples
>>> wavfile = samples['sweep.wav']
>>> decoder = get_processor('file_decoder')(wavfile)
>>> grapher = get_processor('waveform_simple')()
>>> analyzer = get_processor('level')()
>>> encoder = get_processor('vorbis_encoder')('sweep.ogg')

Then run the magic pipeline:

>>> (decoder | grapher | analyzer | encoder).run()

Render the grapher results:

>>> grapher.render(output='waveform.png')

Show the analyzer results:

>>> print 'Level:', analyzer.results
Level: {'level.max': AnalyzerResult(...), 'level.rms': AnalyzerResult(...)}

So, in only one pass, the audio file has been decoded, analyzed, graphed and transcoded.

For more extensive examples, please see the full documentation [http://files.parisson.com/timeside/doc/].

Install

Thanks to Docker, Timeside is now fully available as a docker composition ready to work. The docker based composition bundles some powerfull applications and modern frameworks out-of-the-box like: Python, Conda, Numpy, Jupyter, Gstreamer, Django, Celery, Haystack, ElasticSearch, MySQL, Redis, uWSGI, Nginx and many more.

First, install Docker [https://docs.docker.com/get-docker/] and docker-compose [https://docs.docker.com/compose/install/]

Then clone TimeSide:

git clone --recursive https://github.com/Parisson/TimeSide.git
cd TimeSide
docker-compose pull

That’s it! Now please go to the documentation to see how to use it.

Note

If you need to user TimeSide outside a docker image please refer to the rules of the Dockerfile which is based on a Debian stable system. But we do not provide any kind of free support in this usercase anymore (the dependency list is now huge). To get commercial support in more various usecases, please reach the Parisson dev team.

User Interfaces

Ipython

To run the ipython shell, just do it through the docker composition:

docker-compose run app ipython

Notebook

You can also run your code in the wonderful Jupyter Notebook [http://jupyter.org/] which gives you a web interface to run your own code and share the results with your collaborators:

docker-compose -f docker-compose.yml -f env/notebook.yml up

and then browse http://localhost:8888 to access the Jupyter notebook interface. Use the token given in the docker logs of the notebook container to login.

Warning

Running a Jupyter notebook server with this setup in a non-secured network is not safe. See Running a notebook server [http://jupyter-notebook.readthedocs.org/en/latest/public_server.html/] for a documented solution to this security problem.

Use you own data

The var/media directory is mounted in /srv/media inside the container so you can use it to exchange data between the host and the app container.

Web Server

TimeSide now includes an experimental web service with a REST API:

git clone https://github.com/Parisson/TimeSide.git
cd TimeSide
docker-compose up db

This will pull all needed images for running the server and then initialize the database. Leave the session with CTRL+C and then finally do:

docker-compose up

This will initialize everything and create a bunch a test sample boilerplate. You can browse the TimeSide API at:

http://localhost:8000/timeside/api/

and the admin interface (login: admin, password: admin) at:

http://localhost:8000/timeside/admin

Note

A documentation about using the objects and processors from the webserver will be written soon. We need help on this!

All (raw, still experimental) results are accessible at :

http://localhost:8000/timeside/

Tip

On MacOS or Windows, replace “localhost” by the virtual machine IP given by docker-machine ip timeside

To process some data by hand in the web environment context, just start a django shell session:

docker-compose run app manage.py shell

To run the webserver in background as a daemon, just add the -d option:

docker-compose up -d

Batch

A shell script is provided to enable preset based and recursive processing through your command line interface:

timeside-launch -h
Usage: bin/timeside-launch [options] -c file.conf file1.wav [file2.wav ...]
 help: bin/timeside-launch -h

Options:
 -h, --help show this help message and exit
 -v, --verbose be verbose
 -q, --quiet be quiet
 -C <config_file>, --conf=<config_file>
 configuration file
 -s <samplerate>, --samplerate=<samplerate>
 samplerate at which to run the pipeline
 -c <channels>, --channels=<channels>
 number of channels to run the pipeline with
 -b <blocksize>, --blocksize=<blocksize>
 blocksize at which to run the pipeline
 -a <analyzers>, --analyzers=<analyzers>
 analyzers in the pipeline
 -g <graphers>, --graphers=<graphers>
 graphers in the pipeline
 -e <encoders>, --encoders=<encoders>
 encoders in the pipeline
 -R <formats>, --results-formats=<formats>
 list of results output formats for the analyzers
 results
 -I <formats>, --images-formats=<formats>
 list of graph output formats for the analyzers results
 -o <outputdir>, --ouput-directory=<outputdir>
 output directory

Find some preset examples in examples/presets/

Web player

TimeSide comes with a smart and pure HTML5 audio player.

Features:

	embed it in any audio web application

	stream, playback and download various audio formats on the fly

	synchronize sound with text, bitmap and vectorial events

	seek through various semantic, analytic and time synced data

	fully skinnable with CSS style

[image: TimeSide player]
Examples of the player embeded in the Telemeta open web audio CMS:

	http://parisson.telemeta.org/archives/items/PRS_07_01_03/

	http://archives.crem-cnrs.fr/items/CNRSMH_I_1956_002_001_01/

Development documentation:

	https://github.com/Parisson/TimeSide/wiki/Ui-Guide

Documentation

	General documentation: https://timeside.readthedocs.io/en/latest/index.html

	Tutorials: https://timeside.readthedocs.io/en/latest/tutorials/index.html

	RESTful API: https://sandbox.wasabi.telemeta.org/timeside/api/docs/

	Publications: https://github.com/Parisson/Telemeta-doc

	Slides: https://ircam-web.github.io/timeside-slides/#1

	Some (old) notebooks: http://mybinder.org/repo/thomasfillon/Timeside-demos

	Player UI wiki (v1): https://github.com/Parisson/TimeSide/wiki/Ui-Guide

	A player example (v1): http://archives.crem-cnrs.fr/archives/items/CNRSMH_E_2004_017_001_01/

TimeSide : Tutorials

Contents:

	Quick start

	Data management
	Default

	Specification of time_mode

	Specification of data_mode

	Using the 'stack' (previously decoded frames)

	Streaming out encoded audio

Quick start

A most basic operation, transcoding, is easily performed with two processors:

>>> import timeside
>>> from timeside.core.tools.test_samples import samples
>>> from timeside.core import get_processor
>>> decoder = get_processor('file_decoder')(samples["sweep.wav"])
>>> encoder = get_processor('vorbis_encoder')("sweep.ogg")
>>> pipe = decoder | encoder
>>> pipe.run()

As one can see in the above example, creating a processing pipe is performed with
the binary OR operator.

Audio data visualisation can be performed using graphers, such as Waveform and
Spectrogram. All graphers return an image:

>>> import timeside
>>> from timeside.core.tools.test_samples import samples
>>> from timeside.core import get_processor
>>> decoder = get_processor('file_decoder')(samples["sweep.wav"])
>>> spectrogram = get_processor('spectrogram_lin')(width=400, height=150)
>>> (decoder | spectrogram).run()
>>> spectrogram.render('graph.png')

It is possible to create longer pipes, as well as subpipes, here for both
analysis and encoding:

>>> import timeside
>>> from timeside.core.tools.test_samples import samples
>>> from timeside.core import get_processor
>>> decoder = get_processor('file_decoder')(samples["sweep.wav"])
>>> levels = get_processor('level')()
>>> encoders = get_processor('mp3_encoder')('sweep.mp3') | get_processor('flac_encoder')('sweep.flac')
>>> (decoder | levels | encoders).run()
>>> print levels.results

Data management

TimeSide offers various ways to access to audio data or metadata. AnalyzerResult is the python data structure where TimeSide embeds all the data resulting from a given analyzer processors after a run. It is thus the base object to access the analysis results and all the corresponding metadata. Bellow are some examples of use of the AnalyzerResult object and some of its methods.

Usage : AnalyzerResult(data_mode=None, time_mode=None)

Four different time_mode can be specified :

	‘framewise’ : data are returned on a frame basis (i.e. with specified blocksize, stepsize and framerate)

	‘global’ : a global data value is return for the entire audio item

	‘segment’ : data are returned on a segment basis (i.e. with specified start time and duration)

	‘event’ : data are returned on a instantaneous event basis (i.e. with specified start time)

Two different data_mode can be specified :

	‘value’ : data are returned as numpy Array of arbitrary type

	‘label’ : data are returned as label indexes (specified by the label_metadata key)

Default values are time_mode = ‘framewise’ and data_mode = ‘value’

See : timeside.core.analyzer.AnalyzerResult(), timeside.core.analyzer.AnalyzerResult

Default

Create a new analyzer result without default arguments

>>> from timeside.core.analyzer import AnalyzerResult
>>> res = AnalyzerResult()

>>> res.keys()
['id_metadata', 'data_object', 'audio_metadata', 'parameters']

>>> for key,value in res.items():
... print '%s : %s' % (key, value)
...
id_metadata : {'description': '', 'author': '', 'version': '', 'date': '', 'proc_uuid': '', 'id': '', 'unit': '', 'name': ''}
data_object : {'y_value': array([], dtype=float64), 'value': array([], dtype=float64), 'frame_metadata': {'blocksize': None, 'samplerate': None, 'stepsize': None}}
audio_metadata : {'sha1': '', 'is_segment': None, 'uri': '', 'channels': None, 'start': 0, 'channelsManagement': '', 'duration': None}
parameters : {}

Specification of time_mode

Four different time_mode can be specified :

	‘framewise’ : data are returned on a frame basis (i.e. with specified blocksize, stepsize and framerate)

	‘global’ : a global data value is return for the entire audio item

	‘segment’ : data are returned on a segment basis (i.e. with specified start time and duration)

	‘event’ : data are returned on a segment basis (i.e. with specified start time)

Framewise

>>> res = AnalyzerResult(time_mode='framewise')
>>> res.data_object.keys()
['value', 'y_value', 'frame_metadata']

Global

No frame metadata information is needed for these modes.
The ‘frame_metadata’ key/attribute is deleted.

>>> res = AnalyzerResult(time_mode='global')
>>> res.data_object.keys()
['value', 'y_value']

>>> res.data_object
GlobalValueObject(value=array([], dtype=float64), y_value=array([], dtype=float64))

Segment

>>> res = AnalyzerResult(time_mode='segment')
>>> res.keys()
['id_metadata', 'data_object', 'audio_metadata', 'parameters']
>>> res.data_object
SegmentValueObject(value=array([], dtype=float64), y_value=array([], dtype=float64), time=array([], dtype=float64), duration=array([], dtype=float64))

Event

>>> res = AnalyzerResult(time_mode='event')
>>> res.keys()
['id_metadata', 'data_object', 'audio_metadata', 'parameters']
>>> res.data_object
EventValueObject(value=array([], dtype=float64), y_value=array([], dtype=float64), time=array([], dtype=float64))

Specification of data_mode

Two different data_mode can be specified :

	‘value’ : data are returned as numpy Array of arbitrary type

	‘label’ : data are returned as label indexes (specified by the label_metadata key)

Value

>>> res = AnalyzerResult(data_mode='value')
>>> res.data_object.keys()
['value', 'y_value', 'frame_metadata']

In the dataObject key, the ‘value’ key is kept and the ‘label’ key is deleted.

>>> res.data_object
FrameValueObject(value=array([], dtype=float64), y_value=array([], dtype=float64), frame_metadata=FrameMetadata(samplerate=None, blocksize=None, stepsize=None))

Label

A label_metadata key is added.

>>> res = AnalyzerResult(data_mode='label')
>>> res.data_object.keys()
['label', 'label_metadata', 'frame_metadata']

>>> res.data_object
FrameLabelObject(label=array([], dtype=int64), label_metadata=LabelMetadata(label=None, description=None, label_type='mono'), frame_metadata=FrameMetadata(samplerate=None, blocksize=None, stepsize=None))

Using the ‘stack’ (previously decoded frames)

This is an example of using the stack argument in timeside.plugins.decoder.file.FileDecoder to run a pipe with previously decoded frames stacked in memory on a second pass.

First, let’s import everything and define the audio file source :

>>> import timeside.core
>>> from timeside.core import get_processor
>>> from timeside.core.tools.test_samples import samples
>>> import numpy as np
>>> audio_file = samples['sweep.mp3']

Then let’s setup a FileDecoder with argument stack=True (default argument is stack=False) :

>>> decoder = timeside.plugins.decoder.file.FileDecoder(audio_file, stack=True)

Setup an arbitrary analyzer to check that decoding process from file and from stack are equivalent:

>>> level = get_processor('level')()
>>> pipe = (decoder | level)
>>> print pipe.processors
[file_decoder-{}, level-{}]

Run the pipe:

>>> pipe.run()

The processed frames are stored in the pipe attribute frames_stack as a list of frames :

>>> print type(pipe.frames_stack)
<type 'list'>

First frame :

>>> print pipe.frames_stack[0]
(array([[...]], dtype=float32), False)

Last frame :

>>> print pipe.frames_stack[-1]
(array([[...]], dtype=float32), True)

If the pipe is used for a second run, the processed frames stored in the stack are passed to the other processors without decoding the audio source again.

Streaming out encoded audio

Instead of calling a pipe.run(), the chunks of an encoding processor can also be retrieved and streamed outside the pipe during the process.

>>> import timeside
>>> from timeside.core import get_processor
>>> from timeside.core.tools.test_samples import samples
>>> import numpy as np
>>> audio_file = samples['sweep.wav']
>>> decoder = get_processor('file_decoder')(audio_file, duration=1)
>>> output = '/tmp/test.mp3'
>>> encoder = get_processor('mp3_encoder')(output, streaming=True, overwrite=True)
>>> pipe = decoder | encoder

Create a process callback method so that you can retrieve end send the chunks:

>>> def streaming_callback():
... for chunk in pipe.stream():
... # Do something with chunk
... print chunk.timestamp

Now you can use the callback to stream the audio data outside TimeSide!

>>> streaming_callback()

TimeSide core API

	List of available processors
	Encoder

	Decoder

	Grapher

	Analyzer

	ValueAnalyzer

	Effect

	Decoder package
	File Decoder

	Array Decoder

	Live Decoder

	Analyzer package
	Analyzer Core module

	Analyzers processors

	Analyzer preprocessors

	Encoder package
	Core module

	Encoders

	Grapher package
	Core module

	Graphers

	Provider package
	Core module

	Providers

List of available processors

Encoder

	flac_aubio_encoder 1.0: FLAC encoder based on aubio

	vorbis_aubio_encoder 1.0: OGG Vorbis encoder based on aubio

	wav_aubio_encoder 1.0: Wav encoder based on aubio

	live_encoder 1.0: Gstreamer-based Audio Sink

	flac_encoder 1.0: FLAC encoder based on Gstreamer

	aac_encoder 1.0: AAC encoder based on Gstreamer

	mp3_encoder 1.0: MP3 encoder based on Gstreamer

	vorbis_encoder 1.0: OGG Vorbis encoder based on Gstreamer

	opus_encoder 1.0: Opus encoder based on Gstreamer

	wav_encoder 1.0: WAV encoder based on Gstreamer

	webm_encoder 1.0: WebM encoder based on Gstreamer

Decoder

	array_decoder 1.0: Decoder taking Numpy array as input

	aubio_decoder 1.0: File decoder based on aubio

	file_decoder 1.0: File Decoder based on Gstreamer

Grapher

	grapher_aubio_pitch 1.0: Image representing Pitch

	grapher_aubio_silence 1.0: Image representing Aubio Silence

	grapher_dissonance 1.0: Image representing Dissonance

	grapher_vamp_cqt 1.0: Image representing Constant Q Transform

	grapher_loudness_itu 1.0: Image representing Loudness ITU

	spectrogram 1.0: Image representing Linear Spectrogram

	grapher_onset_detection_function 1.0: Image representing Onset detection

	grapher_waveform 1.0: Image representing Waveform from Analyzer

	spectrogram_log 1.0: Logarithmic scaled spectrogram (level vs. frequency vs. time).

	spectrogram_lin 1.0: Linear scaled spectrogram (level vs. frequency vs. time).

	waveform_simple 1.0: Simple monochrome waveform image.

	waveform_centroid 1.0: Waveform where peaks are colored relatively to the spectral centroids of each frame buffer.

	waveform_contour_black 1.0: Black amplitude contour waveform.

	waveform_contour_white 1.0: an white amplitude contour wavform.

	waveform_transparent 1.0: Transparent waveform.

Analyzer

	aubio_melenergy 0.4.6: Aubio Mel Energy analyzer

	aubio_mfcc 0.4.6: Aubio MFCC analyzer

	aubio_pitch 0.4.6: Aubio Pitch estimation analyzer

	aubio_silence 0.4.6: Aubio Silence detection analyzer

	aubio_specdesc 0.4.6: Aubio Spectral Descriptors collection analyzer

	aubio_temporal 0.4.6: Aubio Temporal analyzer

	essentia_dissonance 2.1b5.dev416: Dissonance from Essentia

	vamp_constantq 1.1.0: Constant Q transform from QMUL vamp plugins

	vamp_simple_host 1.1.0: Vamp plugins library interface analyzer

	loudness_itu 1.0: Measure of audio loudness using standard ITU-R BS.1770-3

	spectrogram_analyzer 1.0: Spectrogram image builder with an extensible buffer based on tables

	onset_detection_function 1.0: Onset Detection Function analyzer

	spectrogram_analyzer_buffer 1.0: Spectrogram image builder with an extensible buffer based on tables

	waveform_analyzer 1.0: Waveform analyzer

ValueAnalyzer

	mean_dc_shift 1.0: Mean DC shift analyzer

	essentia_dissonance_value 2.1b5.dev416: Mean Dissonance Value from Essentia

	vamp_tempo 1.1.0: Tempo from QMUL vamp plugins

	vamp_tuning 1.1.0: Tuning from NNLS Chroma vamp plugins

	level 1.0: Audio level analyzer

Effect

	fx_gain 1.0: Gain effect processor

Decoder package

File Decoder

Array Decoder

Live Decoder

Analyzer package

	Analyzer Core module
	AnalyzerResult

	AnalyzerResultContainer

	Analyzers processors
	Timeside Core Analyzers

	Analyzers from external librairies

	Analyzer preprocessors
	downmix_to_mono

	frames_adapter

Core

AnalyzerResult

AnalyzerResultContainer

Analyzers

	Timeside Core Analyzers
	Global analyzers
	Mean DC Shift

	Level

	Value Analyzers
	Spectrogram

	Analyzers from external librairies
	Aubio
	Aubio Melenergy

	Aubio MFCC

	Aubio Pitch

	Aubio Spectral Descriptors collection

	Aubio Temporal

	Yaafe

Timeside Core Analyzers

Global analyzers

Mean DC Shift

Level

Value Analyzers

Spectrogram

Analyzer from External librairies

Aubio

aubio is a tool designed for the extraction of annotations from audio signals. Its features include segmenting a sound file before each of its attacks, performing pitch detection, tapping the beat and producing midi streams from live audio.
See http://aubio.org/

Aubio Melenergy

Aubio MFCC

Aubio Pitch

Aubio Spectral Descriptors collection

Aubio Temporal

Yaafe

Preprocessors

downmix_to_mono

frames_adapter

Encoder package

Core module

Encoders

Flac encoder

Aac encoder

Mp3 encoder

Vorbis encoder

Wav encoder

WebM encoder

AudioSink encoder

Grapher package

Core module

Graphers

Waveform

WaveformCentroid

WaveformTransparent

WaveformContour

SpectrogramLog

SpectrogramLin

Provider package

Core module

Providers

YouTube

DeezerPreview

DeezerComplete

Development

[image: travis_dev] [https://travis-ci.org/Parisson/TimeSide/] [image: coveralls_dev] [https://coveralls.io/r/Parisson/TimeSide?branch=dev]

Developing within TimeSide

If the TimeSide library gives you everything you need to develop you own plugin, it is advised to start with one existing. For example, starting from the DC analyzer:

git clone https://github.com/Parisson/TimeSide.git
cd TimeSide
git checkout dev
cp timeside/plugins/analyzer/dc.py timeside/plugins/analyzer/my_analyzer.py

Before coding, start docker with mounting the local directory as a volume:

docker run -it -v .:/srv/lib/timeside parisson/timeside:latest ipython

or use the development composition to start a notebook or the webserver:

docker-compose -f docker-compose.yml -f conf/dev.yml up

Developing your own external plugins

If the (already huge) python module bundle provided by TimeSide is to short for you, it is possible to make your own plugin bundle outside the core module thanks to the TimeSide namespace. An extensive example of what you can do is available in the DIADEMS project repository [https://github.com/ANR-DIADEMS/timeside-diadems/]. You can also start with the dummy plugin:

git clone https://github.com/Parisson/TimeSide-Dummy.git
cd TimeSide-Dummy
docker run -it -v ./timeside/plugins/:/srv/lib/timeside/timeside/plugins parisson/timeside:latest ipython

or:

docker-compose -f docker-compose.yml -f conf/dummy.yml up

Production

Deploying

and bleeding edge frameworks like: Nginx, PostgreSQL, Redis, Celery, Django, Django REST Framework and Python. It thus provides a safe and continuous way to deploy your project from an early development stage to a massive production environment.
Our docker composition already bundles some powerful containers

Warning

Before any serious production usecase, you must modify all the passwords and secret keys in the configuration files of the sandbox.

Thanks to Celery, each TimeSide worker of the server will process each task asynchronously over independant threads so that you can load all the cores of your CPU.

Scaling

To scale it up through your cluster, Docker finally provides some nice tools for orchestrating it very easily: Machine and Swarm [https://blog.docker.com/2015/02/orchestrating-docker-with-machine-swarm-and-compose/].

Sponsors and Partners

	IRCAM [https://www.ircam.fr] (Paris, France)

	Parisson [http://parisson.com] (Paris, France)

	CNRS [http://www.cnrs.fr]: National Center of Science Research (France)

	Huma-Num [http://www.huma-num.fr/]: big data equipment for digital humanities (CNRS, France)

	CREM [http://www.crem-cnrs.fr]: French National Center of Ethomusicology Research (France)

	Université Pierre et Marie Curie [http://www.upmc.fr] (UPMC Paris, France)

	ANR [http://www.agence-nationale-recherche.fr/]: Agence Nationale de la Recherche (France)

	MNHN [http://www.mnhn.fr] : Museum National d’Histoire Naturelle (Paris, France)

	C4DM [http://c4dm.eecs.qmul.ac.uk/] : Center for Digital Music, Queen Mary University (London, United Kingdom)

	NYU Steinhardt [http://steinhardt.nyu.edu/music/] : Music and Performing Arts Professions, New York University (New York, USA)

Related projects

	Telemeta [http://telemeta.org] : Open web audio platform

	Sound archives of the CNRS [http://archives.crem-cnrs.fr/], CREM and the “Musée de l’Homme” in Paris, France

	DIADEMS [http://www.irit.fr/recherches/SAMOVA/DIADEMS/en/welcome/] sponsored by the ANR.

	DaCaRyh [http://gtr.rcuk.ac.uk/projects?ref=AH/N504531/1], Data science for the study of calypso-rhythm through history

	KAMoulox [https://anr-kamoulox.github.io/] Online unmixing of large historical archives

	NYU+CREM+Parisson : arabic music analysis from the full CREM database

	WASABI [http://wasabihome.i3s.unice.fr/]: Web Audio Semantic Aggregated in the Browser for Indexation, sponsored by the ANR

Copyrights

	Copyright (c) 2019, 2021 IRCAM

	Copyright (c) 2006, 2021 Guillaume Pellerin

	Copyright (c) 2010, 2021 Paul Brossier

	Copyright (c) 2021 Romain Herbelleau

	Copyright (c) 2019, 2020 Antoine Grandry

	Copyright (c) 2006, 2019 Parisson SARL

	Copyright (c) 2013, 2017 Thomas Fillon

	Copyright (c) 2013, 2014 Maxime Lecoz

	Copyright (c) 2013, 2014 David Doukhan

	Copyright (c) 2006, 2010 Olivier Guilyardi

License

TimeSide is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

TimeSide is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

Read the LICENSE.txt file for more details.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 timeside.plugins	

 	
 	
 timeside.plugins.decoder	

Index

 T

T

 	
 	timeside.plugins.decoder (module)

 _images/badge.png
‘coverage 37%

_images/timeside_player_01.png
06:00 [CERERA 00
oo e

Wiy

» I @

Analyse | Marqueurs

Propriété Valeur Unité
Channels 1

Duration 0:26:19.09 s
Max level -3.009 deFs
Mean DC shift -0.001 %
MIME type audio/x-wav

Resolution 24 bits
RMS level 488 deFs

Samplerate 44100

{@ Tétéchargeme:

_static/file.png

nav.xhtml

 Table of Contents

 		
 TimeSide : open web audio processing framework

 		
 TimeSide : scalable audio processing framework and server written in Python

 		
 Use cases

 		
 Goals

 		
 Funding and support

 		
 News

 		
 1.0

 		
 0.9

 		
 0.8

 		
 0.7.1

 		
 0.7

 		
 Architecture

 		
 Dive in

 		
 Install

 		
 User Interfaces

 		
 Ipython

 		
 Notebook

 		
 Use you own data

 		
 Web Server

 		
 Batch

 		
 Web player

 		
 Documentation

 		
 Tutorials

 		
 Quick start

 		
 Data management

 		
 Default

 		
 Specification of time_mode

 		
 Specification of data_mode

 		
 Using the 'stack' (previously decoded frames)

 		
 Streaming out encoded audio

 		
 Core API

 		
 List of available processors

 		
 Encoder

 		
 Decoder

 		
 Grapher

 		
 Analyzer

 		
 ValueAnalyzer

 		
 Effect

 		
 Decoder package

 		
 File Decoder

 		
 Array Decoder

 		
 Live Decoder

 		
 Analyzer package

 		
 Analyzer Core module

 		
 Analyzers processors

 		
 Analyzer preprocessors

 		
 Encoder package

 		
 Core module

 		
 Encoders

 		
 Grapher package

 		
 Core module

 		
 Graphers

 		
 Provider package

 		
 Core module

 		
 Providers

 		
 Development

 		
 Developing within TimeSide

 		
 Developing your own external plugins

 		
 Production

 		
 Deploying

 		
 Scaling

 		
 Sponsors and Partners

 		
 Related projects

 		
 Copyrights

 		
 License

_static/minus.png

_static/plus.png

